sclr_ideal_data.Rd
Allows variation of all parameters and the creation of an arbitrary number of covariates.
sclr_ideal_data( n = 1000, theta = 0, beta_0 = -5, covariate_list = list(logHI = list(gen_fun = function(n) rnorm(n, 2, 2), true_par = 2)), outcome_name = "status", seed = NULL, attach_true_vals = FALSE, attach_seed = FALSE )
n | Number of observations. |
---|---|
theta | Baseline risk parameter on the logit scale. |
beta_0 | Intercept of the linear part. |
covariate_list | A list in the form of |
outcome_name | Name to give to the outcome |
seed | Seed to set. If |
attach_true_vals, attach_seed | Whether to attach additional attributes. |
A tibble
.
# One titre one_titre <- sclr_ideal_data( covariate_list = list( logHI = list(gen_fun = function(n) rnorm(n, 2, 2), true_par = 2) ) ) sclr(status ~ logHI, one_titre) # Verify#> Call: status ~ logHI #> #> Parameter estimates #> theta beta_0 beta_logHI #> -0.06484168 -4.42520145 1.78120196 #> #> 95% confidence intervals #> 2.5 % 97.5 % #> theta -0.3135404 0.183857 #> beta_0 -6.3939538 -2.456449 #> beta_logHI 1.1539529 2.408451 #> #> Log likelihood: -502.8787# Two titres two_titre <- sclr_ideal_data( covariate_list = list( logHI = list(gen_fun = function(n) rnorm(n, 2, 2), true_par = 2), logNI = list(gen_fun = function(n) rnorm(n, 2, 2), true_par = 1) ) ) sclr(status ~ logHI + logNI, two_titre) # Verify#> Call: status ~ logHI + logNI #> #> Parameter estimates #> theta beta_0 beta_logHI beta_logNI #> 0.02772784 -5.37529345 1.98366325 1.08743525 #> #> 95% confidence intervals #> 2.5 % 97.5 % #> theta -0.2334394 0.2888951 #> beta_0 -7.3368815 -3.4137054 #> beta_logHI 1.3900955 2.5772310 #> beta_logNI 0.7297320 1.4451385 #> #> Log likelihood: -372.2128